Systemic Blockade of Dopamine D2-Like Receptors Increases High-Voltage Spindles in the Globus Pallidus and Motor Cortex of Freely Moving Rats
نویسندگان
چکیده
High-voltage spindles (HVSs) have been reported to appear spontaneously and widely in the cortical-basal ganglia networks of rats. Our previous study showed that dopamine depletion can significantly increase the power and coherence of HVSs in the globus pallidus (GP) and motor cortex of freely moving rats. However, it is unclear whether dopamine regulates HVS activity by acting on dopamine D₁-like receptors or D₂-like receptors. We employed local-field potential and electrocorticogram methods to simultaneously record the oscillatory activities in the GP and primary motor cortex (M1) in freely moving rats following systemic administration of dopamine receptor antagonists or saline. The results showed that the dopamine D₂-like receptor antagonists, raclopride and haloperidol, significantly increased the number and duration of HVSs, and the relative power associated with HVS activity in the GP and M1 cortex. Coherence values for HVS activity between the GP and M1 cortex area were also significantly increased by dopamine D₂-like receptor antagonists. On the contrary, the selective dopamine D₁-like receptor antagonist, SCH23390, had no significant effect on the number, duration, or relative power of HVSs, or HVS-related coherence between M1 and GP. In conclusion, dopamine D₂-like receptors, but not D₁-like receptors, were involved in HVS regulation. This supports the important role of dopamine D₂-like receptors in the regulation of HVSs. An siRNA knock-down experiment on the striatum confirmed our conclusion.
منابع مشابه
The Blockade of D1/D2-Like Dopamine Receptors within the Dentate Gyrus of Hippocampus Decreased the Reinstatement of Morphine-Extinguished Conditioned Place Preference in Rats
Introduction: The hippocampus (HIP), the primary brain structure related to learning and memory, receives sparse but comprehensive dopamine innervations and contains dopamine D1/D2-like receptors. It is demonstrated that dopamine receptors in dentate gyrus (DG) region of HIP have a remarkable function in spatial reward processing. Much less is known about the involvement of HIP and its D1...
متن کامل[18F]fallypride characterization of striatal and extrastriatal D2/3 receptors in Parkinson's disease
Parkinson's disease (PD) is characterized by widespread degeneration of monoaminergic (especially dopaminergic) networks, manifesting with a number of both motor and non-motor symptoms. Regional alterations to dopamine D2/3 receptors in PD patients are documented in striatal and some extrastriatal areas, and medications that target D2/3 receptors can improve motor and non-motor symptoms. Howeve...
متن کاملStriatal But Not Extrastriatal Dopamine Receptors Are Critical to Dopaminergic Motor Stimulation
Dopamine (DA) is required for motor function in vertebrate animals including humans. The striatum, a key motor control center, receives a dense DA innervation and express high levels of DA D1 receptors (D1Rs) and D2 receptors (D2Rs). Other brain areas involved in motor function such as the globus pallidus external segment (GPe) and the substantia nigra pars reticulata (SNr) and the motor cortex...
متن کاملDopamine-adenosine interactions in the striatum and the globus pallidus: inhibition of striatopallidal neurons through either D2 or A2A receptors enhances D1 receptor-mediated effects on c-fos expression.
D1 receptors located on striatonigral neurons and D2 receptors located, together with A2A receptors, on striatopallidal neurons are known to interact functionally. Using in situ hybridization, we examined the effects of D1 and D2 agonists and of an A2A antagonist on c-fos mRNA in identified striatal neurons and in globus pallidus. The full D1 agonist, SKF 82958 (1 mg/kg), induced a homogenous i...
متن کاملHaloperidol-induced changes in neuronal activity in the striatum of the freely moving rat
The striatum is the main input structure of the basal ganglia, integrating input from the cerebral cortex and the thalamus, which is modulated by midbrain dopaminergic input. Dopamine modulators, including agonists and antagonists, are widely used to relieve motor and psychiatric symptoms in a variety of pathological conditions. Haloperidol, a dopamine D2 antagonist, is commonly used in multipl...
متن کامل